"Redução de dimensionalidade utilizando entropia condicional média aplicada a problemas de bioinformática e de processamento de imagens"

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Martins Junior, David Correa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23052006-185224/
Resumo: Redução de dimensionalidade é um problema muito importante da área de reconhecimento de padrões com aplicação em diversos campos do conhecimento. Dentre as técnicas de redução de dimensionalidade, a de seleção de características foi o principal foco desta pesquisa. De uma forma geral, a maioria dos métodos de redução de dimensionalidade presentes na literatura costumam privilegiar casos nos quais os dados sejam linearmente separáveis e só existam duas classes distintas. No intuito de tratar casos mais genéricos, este trabalho propõe uma função critério, baseada em sólidos princípios de teoria estatística como entropia e informação mútua, a ser embutida nos algoritmos de seleção de características existentes. A proposta dessa abordagem é tornar possível classificar os dados, linearmente separáveis ou não, em duas ou mais classes levando em conta um pequeno subespaço de características. Alguns resultados com dados sintéticos e dados reais foram obtidos confirmando a utilidade dessa técnica. Este trabalho tratou dois problemas de bioinformática. O primeiro trata de distinguir dois fenômenos biológicos através de seleção de um subconjunto apropriado de genes. Foi estudada uma técnica de seleção de genes fortes utilizando máquinas de suporte vetorial (MSV) que já vinha sendo aplicada para este fim em dados de SAGE do genoma humano. Grande parte dos genes fortes encontrados por esta técnica para distinguir tumores de cérebro (glioblastoma e astrocytoma), foram validados pela metodologia apresentada neste trabalho. O segundo problema que foi tratado neste trabalho é o de identificação de redes de regulação gênica, utilizando a metodologia proposta, em dados produzidos pelo trabalho de DeRisi et al sobre microarray do genoma do Plasmodium falciparum, agente causador da malária, durante as 48 horas de seu ciclo de vida. O presente texto apresenta evidências de que a utilização da entropia condicional média para estimar redes genéticas probabilísticas (PGN) pode ser uma abordagem bastante promissora nesse tipo de aplicação. No contexto de processamento de imagens, tal técnica pôde ser aplicada com sucesso em obter W-operadores minimais para realização de filtragem de imagens e reconhecimento de texturas.