Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Patrocinio, Ana Claudia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18133/tde-27102017-140806/
|
Resumo: |
Os Esquemas CAD (\"Computer - Aided Diagnosis\") têm mostrado bons resultados no auxílio ao diagnóstico precoce do câncer de mama. A classificação, nesses esquemas, é algo complexo e abrange investigações não só de técnicas computacionais, mas também das caracterizações citológicas dos achados de interesse clínico. Por isso, o presente trabalho objetivou o desenvolvimento de um esquema classificador visando a indicação de cada caso como \"suspeito\" e \"não-suspeito\", com base em investigações de imagens mamográficas digitalizadas. Nessa investigação em particular, o foco de análise foram agrupamentos de microcalcificações detectadas por técnicas de processamento de imagens. A técnica de classificação utilizada no esquema baseou-se em redes neurais artificiais (RNA) supervisionadas, empregando algoritmo de aprendizagem \"backpropagation\". O esquema classificador usando RNA, mostrou a eficiência dos descritores de forma na caracterização dos agrupamentos de microcalcificações e também a influência de atributos extraídos dos laudos das imagens como a idade e a \"densificação\". Os melhores resultados obtidos - apresentados aqui em forma de porcentagens e também de curvas ROC - mostraram 92% de acerto total com Az = 0,96 aproximadamente, índices compatíveis aos dos melhores classificadores descritos pela literatura. |