Construção de redes usando estatística clássica e Bayesiana - uma comparação

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Thomas, Lina Dornelas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-25072012-143548/
Resumo: Nesta pesquisa, estudamos e comparamos duas maneiras de se construir redes. O principal objetivo do nosso estudo é encontrar uma forma efetiva de se construir redes, especialmente quando temos menos observações do que variáveis. A construção das redes é realizada através da estimação do coeficiente de correlação parcial com base na estatística clássica (inverse method) e na Bayesiana (priori conjugada Normal - Wishart invertida). No presente trabalho, para resolver o problema de se ter menos observações do que variáveis, propomos uma nova metodologia, a qual chamamos correlação parcial local, que consiste em selecionar, para cada par de variáveis, as demais variáveis que apresentam maior coeficiente de correlação com o par. Aplicamos essas metodologias em dados simulados e as comparamos traçando curvas ROC. O resultado mais atrativo foi que, mesmo com custo computacional alto, usar inferência Bayesiana é melhor quando temos menos observações do que variáveis. Em outros casos, ambas abordagens apresentam resultados satisfatórios.