Sumarização automática multivídeo baseada em estratégias humanas

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Barbieri, Tamires Tessarolli de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27092021-101106/
Resumo: Nos últimos anos, o volume de dados multimídia produzidos e disponíveis para acesso tem crescido contínua e rapidamente. Esse contexto agravou o problema da sobrecarga de informação: encontrar conteúdo de interesse em meio à grande quantidade de opções disponíveis, tornando essenciais sistemas que possibilitem acesso eficiente. A sumarização de vídeo é uma área de pesquisa que busca lidar com esse problema, fornecendo uma versão compacta e informativa do conteúdo. Em particular, os sistemas multimídia atuais disponibilizam diversos vídeos relacionados ao mesmo assunto, contendo informações complementares. Esse fato ressalta a importância da sumarização multivídeo para lidar com o interesse do usuário em se informar sobre determinado assunto a partir de um conjunto de vídeos que o abordam, sem a necessidade de assistir a todos eles. Entretanto, a análise da literatura mostra que estratégias humanas não são consideradas na definição dos critérios utilizados para selecionar automaticamente os segmentos de vídeo que irão compor os sumários e o foco das técnicas tem sido a identificação de informações que se repetem em diferentes vídeos. Assim, esta tese tem o objetivo de investigar se critérios para seleção de conteúdo derivados de estratégias humanas são capazes de produzir resultados semanticamente mais relevantes na visão do usuário. A pesquisa desenvolvida evidencia que a abordagem proposta possibilitou mapear os julgamentos de relevância dos usuários e gerar sumários multivídeo mais próximos a suas expectativas