Inferência de redes de regulação gênica utilizando o paradigma de crescimento de sementes

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Higa, Carlos Henrique Aguena
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06092012-144108/
Resumo: Um problema importante na área de Biologia Sistêmica é o de inferência de redes de regulação gênica. Os avanços científicos e tecnológicos nos permitem analisar a expressão gênica de milhares de genes simultaneamente. Por \"expressão gênica\'\', estamos nos referindo ao nível de mRNA dentro de uma célula. Devido a esta grande quantidade de dados, métodos matemáticos, estatísticos e computacionais têm sido desenvolvidos com o objetivo de elucidar os mecanismos de regulação gênica presentes nos organismos vivos. Para isso, modelos matemáticos de redes de regulação gênica têm sido propostos, assim como algoritmos para inferir estas redes. Neste trabalho, focamos nestes dois aspectos: modelagem e inferência. Com relação à modelagem, estudamos modelos existentes para o ciclo celular da levedura (Saccharomyces cerevisiae). Após este estudo, propomos um modelo baseado em redes Booleanas probabilísticas sensíveis ao contexto, e em seguida, um aprimoramento deste modelo, utilizando cadeias de Markov não homogêneas. Mostramos os resultados, comparando os nossos modelos com os modelos estudados. Com relação à inferência, propomos um novo algoritmo utilizando o paradigma de crescimento de semente de genes. Neste contexto, uma semente é um pequeno subconjunto de genes de interesse. Nosso algoritmo é baseado em dois passos: passo de crescimento de semente e passo de amostragem. No primeiro passo, o algoritmo adiciona outros genes à esta semente, seguindo algum critério. No segundo, o algoritmo realiza uma amostragem de redes, definindo como saída um conjunto de redes potencialmente interessantes. Aplicamos o algoritmo em dados artificiais e dados biológicos de células HeLa, mostrando resultados satisfatórios.