Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Soares, Bruno Learth |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-26022008-144335/
|
Resumo: |
Este trabalho aborda a formulação geométrica das teorias clássicas de calibre, ou Yang-Mills, considerando-as como uma importante classe de modelos que deve ser incluída em qualquer tentativa de estabelecer um formalismo matemático geral para a teoria clássica dos campos. Tal formulação deve vir em (pelo menos) duas variantes: a versão hamiltoniana, que passou por uma fase de desenvolvimento rápido durante os últimos 10-15 anos, levando ao que hoje é conhecido como o ``formalismo multissimplético\'\', e a mais tradicional versão lagrangiana utilizada nesta tese. O motivo principal justificando tal investigação é que teorias de calibre constituem os mais importantes exemplos de sistemas dinâmicos que são altamente relevantes na Física e onde a equivalência entre a versão lagrangiana e a versão hamiltoniana, que no caso de sistemas não-singulares é estabelecida pela transformação de Legendre, deixa de ser óbvia, pois teorias de calibre são sistemas degenerados do ponto de vista lagrangiano e são sistemas vinculados do ponto de vista hamiltoniano. Esta propriedade característica das teorias de calibre é uma consequência direta do seu alto grau de simetria, isto é, da sua invariância de calibre. No entanto, numa formulação plenamente geométrica da teoria clássica dos campos, capaz de incorporar situações topologicamente não-triviais, a invariância sob transformações de calibre locais (transformações de calibre de segunda espécie) e, surpreendentemente, até mesmo a invariância sob as transformações de simetria globais correspondentes (transformações de calibre de primeira espécie) não podem ser adequadamente descritas em termos de grupos de Lie e suas ações em variedades, mas requerem a introdução e o uso sistemático de um novo conceito, a saber, fibrados de grupos de Lie e suas ações em fibrados (sobre a mesma variedade base). A meta principal da presente tese é tomar os primeiros passos no desenvolvimento de ferramentas matemáticas adequadas para lidar com este novo conceito de simetria e, como uma primeira aplicação, dar uma definição clara e simples do procedimento de ``acoplamento mínimo\'\' e uma demonstração simples do teorema de Utiyama, segundo o qual lagrangianas para potenciais de calibre (conexões) de primeira ordem (i.e., que dependem apenas dos próprios potenciais de calibre e de suas derivadas parciais até primeira ordem) que são invariantes sob transformações de calibre são necessariamente funções dos campos de calibre (i.e., do tensor de curvatura) invariantes sob as transformações de simetria globais correspondentes. |