Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
Barros, Maxwell Mariano de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-015902/
|
Resumo: |
Estudamos as folheações transversalmente projetivas, denotadas por (M,F), sobre o ponto de vista da geometria transversa. Este tipo de folheaçào é interessante pois inclui as folheações afins e riemannianas. Um modelo para tais folheações é dado pela projeção 'P POT.q'(R) x R 'SETA'P POT.q'(R), onde 'P POT.q'(R) é o espaço projetivo real de dimensão q. Introduzimos a álgebra de Lie 'ANTIIND 'delta' 'CONTÉM' (M,F) das transformações projetivas infinitesimais transversas, a qual possui dimensão '< OU =' 'q POT.2' + 2q, onde q = codim(M,F) e conseguimos alguns resultados globais. Provamos por exemplo, que se dim'delta'CONTÉM' (M,F) = 'q POT.2' + 2q então (M,F) é rasa, que se (M,F) é uma folheaçào transversalmente projetiva completa, toda transformação projetiva infinitesimal transversa é completa e que se a folheação levantada no fibrado dos 2-referenciais transversos de (M,F) não possui funções básicas diferentes das constantes, então todas as folhas de (M,F) são densas em M |