Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Ramos, Caio César Oba |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-20052015-161147/
|
Resumo: |
A detecção de furtos e fraudes nos sistemas de energia provocados por consumidores irregulares é o principal alvo em análises de perdas não-técnicas ou comerciais pelas empresas de energia. Embora a identificação automática de perdas nãotécnicas tenha sido amplamente estudada, a tarefa de selecionar as características mais representativas em um grande conjunto de dados a fim de aumentar a taxa de acerto da identificação, bem como para caracterizar possíveis consumidores irregulares como um problema de otimização, não tem sido muito explorada neste contexto. Neste trabalho, visa-se o desenvolvimento de algoritmos híbridos baseados em técnicas evolutivas a fim de realizar a seleção de características no âmbito da caracterização de perdas não-técnicas, comparando as suas taxas de acerto e verificando as características selecionadas. Vários classificadores são comparados, com destaque para a técnica Floresta de Caminhos Ótimos por sua robustez, sendo ela a técnica escolhida para o cálculo da função objetivo das técnicas evolutivas, analisando o desempenho das mesmas. Os resultados demonstraram que a seleção de características mais representativas podem melhorar a taxa de acerto da classificação de possíveis perdas não-técnicas quando comparada à classificação sem o processo de seleção de características em conjuntos de dados compostos por perfis de consumidores industriais e comerciais. Isto significa que existem características que não são pertinentes e podem diminuir a taxa de acerto durante a classificação dos consumidores. Através da metodologia proposta com o processo de seleção de características, é possível caracterizar e identificar os perfis de consumidores com mais precisão, afim de minimizar os custos com tais perdas, contribuindo para a recuperação de receita das companhias de energia elétrica. |