Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Inui, Guilherme Kazuo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/75/75134/tde-17072024-083806/
|
Resumo: |
A incorporação de moléculas quirais em materiais baseados em perovskitas híbridas abriu novos caminhos para ajustar as propriedades optoeletrônicas dessas perovskitas por meio da transferência de quiralidade para a estrutura inorgânica. No entanto, ainda há uma lacuna na compreensão da interação em escala atômica entre moléculas quirais e a composição química que contribuem na melhora das propriedades físico-químicas desses materiais. Neste estudo, utilizamos a teoria do funcional de densidade para investigar as propriedades estruturais e eletrônicas de perovskitas quirais (R-/S-NEA)2BX4 (R-/S-NEA = R-/S-1-(1-Naftil)etilamônio, onde B = Ge, Sn, Pb, X = Cl, Br, I). Constatamos que os enantiômeros R e S e os modelos de cristais tridimensionais e slabs da estrutura Ruddlesden-Popper têm diferenças mínimas nas constantes de rede, parâmetros estruturais locais e propriedades eletrônicas. No entanto, os enantiômeros diferentes resultam em orientações opostas de inclinação octaédrica, decorrentes da transferência de quiralidade para a estrutura inorgânica, e, também, uma consequência da substituição da eletronegatividade do halogênio. Essa transferência também é evidente nos efeitos de acoplamento spin-órbita de RashbaDresselhaus na estrutura eletrônica. Além disso, demonstramos que as diferenças nos band gap são principalmente governadas pelos níveis de energia atômica naturais dos elementos inorgânicos, enquanto as moléculas orgânicas desempenham um papel crucial no controle do potencial iônico e afinidade eletrônica para sistemas com átomos leves. Os valores de band gap variam de 1,91 eV a 3,77 eV, apontando para o potencial de design de materiais optoeletrônicos avançados. |