Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Paes, Angela Tavares |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-22072007-134749/
|
Resumo: |
Em estudos cujo interesse é avaliar o efeito de fatores prognósticos sobre a sobrevida ou algum outro evento de interesse, é comum o uso de modelos de regressão que relacionam tempos de sobrevivência e covariáveis. Quando covariáveis que apresentam dados omissos são incluídas nos modelos de regressão, os programas estatísticos usuais automaticamente excluem aqueles indivíduos que apresentam omissão em pelo menos uma das covariáveis. Com isso, muitos pesquisadores utilizam apenas as observações completas, descartando grande parte da informação disponível. Está comprovado que a análise baseada apenas nos dados completos pode levar a estimadores altamente viesados e ineficientes. Para lidar com este problema, alguns métodos foram propostos na literatura. O objetivo deste trabalho é estender métodos que lidam com dados de sobrevivência e omissão nas covariáveis para a situação em que existe uma proporção de pacientes na população que não são suscetíveis ao evento de interesse. A idéia principal é utilizar modelos com fração de cura incluindo ponderações para compensar possíveis desproporcionalidades na subamostra de casos completos, levando-se em conta uma possível relação entre omissão e pior prognóstico. Foi considerado um modelo de mistura no qual os tempos de falha foram modelados através da família Weibull ou do modelo semiparamétrico de Cox e as probabilidade de cura foram especificadas por um modelo logístico. Os métodos propostos foram aplicados a dados reais, em que a omissão foi simulada em 10\\%, 30\\% e 50\\% das observações. |