Análise de dados longitudinais em experimentos com cana-de-açúcar

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Freitas, Edjane Gonçalves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12062008-151910/
Resumo: Nesse trabalho foi abordada a situação em que observações de produtividade da cana-de-açúcar (TCH) foram tomadas na mesma unidade experimental em diferentes condições de avalições (anos). Foram avaliados os perfis médios de resposta de 48 genótipos de cana-de-açúcar em dois experimentos: Experimento 1 e Experimento 2, durante três e cinco anos respectivamente, ambos com o delineamento de blocos ao acaso. Esse tipo de planejamento produz uma forma de relação entre as observações tomadas na mesma unidade experimental, portanto requer outras suposições, além das usuais, para que análise seja correta e os testes produzam resultados válidos. Para que as inferências sobre as médias de produtividade sejam válidas e seguras é necessário que o modelo da matriz de covariância dos dados seja apropriado. Diante disso, foram avalidos três alterantivas de análise para dados longitudinais (medidas repetidas no tempo ), sendo utilizados portanto, o modelo univariado, conforme o planejamento do tipo \"split-plot on time\", que impõe forte restrição quanto a matriz de variâncias-covariâncias; o modelo multivariado, que utiliza uma matriz de variâncias-covariâncias não-estruturada e o modelo mistos, que possibilita a seleção de uma matriz que melhor representa os dados. Contudo, verificou-se que não houve diferença entre os resultados dos testes para as diferentes metodologias. Porém, é interessante a continuidade do estudo em relação ao modelo misto, pois devido a sua flexibilidade e precisão é possível obter estimativas mais seguras dos componentes de variância e predizer os valores genotípicos, que por fim poderá proporcionar a predição de produção de uma futura colheita para um determinado genótipo.