Técnicas de visão computacional aplicadas ao reconhecimento de cenas naturais e locomoção autônoma em robôs agrícolas móveis

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Lulio, Luciano Cássio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18145/tde-28112011-233750/
Resumo: O emprego de sistemas computacionais na Agricultura de Precisão (AP) fomenta a automação de processos e tarefas aplicadas nesta área, precisamente voltadas à inspeção e análise de culturas agrícolas, e locomoção guiada/autônoma de robôs móveis. Neste contexto, no presente trabalho foi proposta a aplicação de técnicas de visão computacional nas tarefas citadas, desenvolvidas em abordagens distintas, a serem aplicadas em uma plataforma de robô móvel agrícola, em desenvolvimento no NEPAS/EESC/USP. Para o problema de locomoção do robô (primeira abordagem), foi desenvolvida uma arquitetura de aquisição, processamento e análise de imagens com o objetivo de segmentar, classificar e reconhecer padrões de navegação das linhas de plantio, como referências de guiagem do robô móvel, entre plantações de laranja, milho e cana. Na segunda abordagem, tais técnicas de processamento de imagens são aplicadas também na inspeção e localização das culturas laranja (primário) e milho (secundário), para análise de suas características naturais, localização e quantificação. Para as duas abordagens, a estratégia adotada nas etapas de processamento de imagens abrange: filtragem no domínio espacial das imagens adquiridas; pré-processamento nos espaços de cores RGB e HSV; segmentação não supervisionada JSEG customizada à quantização de cores em regiões não homogêneas nestes espaços de cores; normalização e extração de características dos histogramas das imagens pré-processadas para os conjuntos de treinamento e teste através da análise das componentes principais; reconhecimento de padrões e classificação cognitiva e estatística. A metodologia desenvolvida contemplou bases de dados para cada abordagem entre 700 e 900 imagens de cenas naturais sob condições distintas de aquisição, apresentando resultados significativos quanto ao algoritmo de segmentação nas duas abordagens, mas em menor grau em relação à localização de gramíneas, sendo que os milhos requerem outras técnicas de segmentação, que não aplicadas apenas em quantização de regiões não homogêneas. A classificação estatística, Bayes e Bayes Ingênuo, mostrou-se superior à cognitiva RNA e Fuzzy nas duas abordagens, e posterior construção dos mapas de classe no espaço de cores HSV. Neste mesmo espaço de cores, a quantificação e localização de frutos apresentaram melhores resultados que em RGB. Com isso, as cenas naturais nas duas abordagens foram devidamente processadas, de acordo com os materiais e métodos empregados na segmentação, classificação e reconhecimento de padrões, fornecendo características intrínsecas e distintas das técnicas de visão computacional propostas a cada abordagem.