Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Galletti, Patrícia Aparecida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/11/11136/tde-08012021-162931/
|
Resumo: |
Métodos ópticos têm sido amplamente desenvolvidos para avaliação da qualidade de sementes, a fim de atender à crescente demanda da indústria agrícola e alimentícia. A fluorescência de clorofila e a análise multiespectral de imagens destacam-se como tecnologias rápidas, não destrutivas e precisas, com a geração de informações consistentes sobre diferentes atributos da qualidade de sementes. Esta pesquisa objetivou estudar uma nova abordagem baseada em recentes métodos ópticos para a análise do potencial fisiológico de sementes de tomate e cenoura. Foram utilizadas sementes de tomate dos cultivares Gaúcho e Tyna, representados por três e quatro lotes, respectivamente, e sementes de cenoura dos cultivares Brasília e Francine, representados por quatro lotes cada. O trabalho foi dividido em cinco etapas: 1) análise do potencial fisiológico (germinação e vigor); 2) análise de imagens de fluorescência de clorofila nas combinações de excitação e emissão de 620/730 nm, 630/700 nm, 645/700 nm e 660/700 nm; 3) análise de imagens multiespectrais em 19 comprimentos de onda (365 a 970 nm); 4) análise de imagens de raios X; 5) análise de fotossíntese, fluorescência e índice de clorofila em plântulas. Foram empregados métodos de quimiometria aos dados multiespectrais baseados em análise de componentes principais (PCA), floresta aleatória (RF) e análise discriminante quadrática (QDA). As imagens de fluorescência de clorofila nas combinações de 620/730 nm (tomate) e 660/700 nm (cenoura), possibilitaram a identificação de lotes de sementes de potenciais fisiológicos distintos, além disso, as combinações de 620/730 nm (tomate) e 645/700 nm (tomate e cenoura), permitiram a discriminação de sementes entre cultivares. A análise dos dados multiespectrais empregando a PCA, possibilitou a distinção de sementes entre os cultivares de cenoura, mas isso não foi possível entre os cultivares de tomate. O classificador baseado no algoritmo RF revelou as bandas mais significativas para identificação do vigor das sementes, com destaque para os comprimentos de onda de 365, 570, 590, 660 e 690 nm em tomate, e de 365, 405, 430, 940 e 970 nm em cenoura. O modelo de QDA criado com as bandas mais significativas da RF, apresentou alta precisão na identificação de lotes de sementes de maior e menor vigor, com classificação correta variando entre 89 e 94% em lotes de sementes de tomate e entre 86 e 97% em lotes de sementes de cenoura. Sementes imaturas de tomate de cenoura apresentaram maior proporção de espaços internos vazios, identificados por meio das imagens radiográficas, maior fluorescência de clorofila e maior reflectância multiespectral. As sementes de tomate de menor vigor produziram plântulas com capacidade fotossintética reduzida, maior fluorescência de clorofila e menor índice de clorofila. Em conclusão, as técnicas de fluorescência da clorofila e de imagens multiespectrais (aliadas aos métodos quimiométricos), constituem ferramentas eficazes para análise não destrutiva e confiável do potencial fisiológico de sementes de tomate e cenoura. Diante da crescente demanda da indústria agrícola e de alimentos, essas novas abordagens poderão contribuir de forma eficaz em programas de controle de qualidade nas diversas fases de um sistema de produção de sementes, com o ranqueamento rápido, objetivo e preciso de lotes de sementes. |