Estrutura, propriedades magnéticas, ópticas lineares e não lineares de ferrofluidos: efeito do tamanho das nanopartículas

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Gonçalves, Eduardo Sell
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-03092015-110048/
Resumo: Nanofluidos magnéticos formados por partículas de ferrite de manganês eletricamente carregadas foram estudados sob o ponto de vista estrutural, magnético e óptico. Características estruturais foram analisadas por meio da técnica de espalhamento de raios X a baixos ângulos (SAXS), que permitiu a determinação da distribuição de diâmetros de nanopartículas em solução. Assim, foi possível determinar o comportamento lognormal da distribuição de tamanhos nas amostras, bem como o diâmetro médio das soluções estudadas, Mn3, Mn4 e Mn6, como 2.8nm, 3.4nm e 6.2nm, respectivamente. Ademais, foi investigada a magnetização das diferentes soluções em função da temperatura sob o protocolo ZFC/FC, permitindo a determinação da distribuição de temperaturas de bloqueio, grandeza que depende do volume das partículas. Ao comparar as distribuições obtidas, foi constatado que aquela determinada por medidas magnéticas era mais estreita do que a por SAXS, indicando interações dipolares entre partículas. Essa hipótese foi corroborada por medidas de suscetibilidade ac, que resultaram em tempos de relaxação muito curtos, incompatíveis com modelos de partículas únicas, levando à conclusão da existência de um comprimento de correlação com N partículas interagindo no volume de correlação 3. Tais grupos de partículas não correspondem a aglomerados físicos, uma vez que alterações de densidade eletrônica não foram verificadas nas curvas de espalhamento de raios X, mas sim a clusters magnéticos, que respondem ao campo externo em conjunto. A análise dos resultados de magnetização ac e dc, simultaneamente, evidenciou ainda alterações na anisotropia das partículas, efeitos de superfície devido à redução de tamanho do cristal. O estudo de propriedades ópticas lineares permitiu a determinação do espectro de absorção em função da concentração de nanopartículas em solução. Desse modo, foi verificada a validade da lei de Beer-Lambert em uma região do espectro, para 300nm < < 600nm. O gap óptico foi determinado para as transições diretas e indiretas como EgapDir = 3.07 ± 0.15eV e EgapInd = 2.06 ± 0.11eV, respectivamente. Por fim, propriedades ópticas não lineares foram estudadas por meio da técnica de z-scan na escala de femto-segundo, a fim de estudar efeitos de origem eletrônica. Curvas foram obtidas e, por meio de ajustes de equações teóricas, foi possível a determinação dos parâmetros não lineares. Contudo, estudos adicionais evidenciaram que tais sinais não eram de origem eletrônica, mas sim térmica, como formação de lente térmica e termodifusão. Assim, os coeficientes não lineares dos ferrofluidos não puderam ser determinados com precisão, de maneira que apenas valores máximos desses coeficientes foram obtidos independentemente do tamanho das nanopartículas, sendo max = 3.9x10-2cm/GW o valor máximo para o coeficiente de absorção de dois fótons e |n2max| = 5.3x10-16cm2/W, para o índice de refração não linear.