Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Tasso, Carlos Roberto Batista |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/75/75135/tde-02072020-143547/
|
Resumo: |
<span style=\"font-weight: 400;\">Novos ligantes foram sintetizados utilizando 4-aminopiridina (py-4NH<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">), 3-aminopiridina (py-3NH<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">) e 1,10-fenantrolina-5-amino (phen-5NH<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">) como fonte de N-heterocíclicos. Para reagir com o grupo NH<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\"> dos N-heterocíclicos foi utilizado como fonte de ácido graxo o óleo de girassol (G) e o ácido oleico (O) comercial. Como fonte de olefina cíclica <span style=\"font-weight: 400;\">o ácido-5-norborneno-2- carboxílico (NBE-COOH). O cloreto de acila formado através de uma reação de acilação reagiu com o grupo NH<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\"> para formar os ligantes piridina-3amida ácido graxo girassol (py-3NH-G), piridina-4amida ácido graxo girassol (py-4NH-G), piridina-3amida ácido graxo oleico (py-3NH-O), 1,10-fenantrolina-5amida ácido graxo oleico (phen-5NH-O) e 1,10-fenantrolina-5amida norborneno (phen-5NH-NBE). As purificações foram realizadas através de colunas de sílica gel. Todas as etapas para preparações dos ligantes foram caracterizadas por RMN de <span style=\"font-weight: 400;\">1<span style=\"font-weight: 400;\">H e FTIR. Esses ligantes foram utilizados nas novas sínteses de complexos com rutênio. Os complexos precursores [RuCl<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(bpy)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">].H<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">O, [RuCl<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(phen)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">].H<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">O e os complexos [RuCl(bpy)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(py-3NH-G)]PF<span style=\"font-weight: 400;\">6<span style=\"font-weight: 400;\">(complexo 1), [RuCl(bpy)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(py-4NH-G)]PF<span style=\"font-weight: 400;\">6<span style=\"font-weight: 400;\"> (complexo 2), [RuCl(bpy)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(py-3NH-O)]PF<span style=\"font-weight: 400;\">6<span style=\"font-weight: 400;\"> (complexo 3), [Ru(bpy)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(py-3NH-O)(py-3NH<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">)](PF<span style=\"font-weight: 400;\">6<span style=\"font-weight: 400;\">)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\"> (complexo 4), <span style=\"font-weight: 400;\">[Ru(phen)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(phen-5NH-O)](PF<span style=\"font-weight: 400;\">6<span style=\"font-weight: 400;\">)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\"> (complexo 5) e [Ru(phen-5NH-O)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(phen-5NH-NBE)](PF<span style=\"font-weight: 400;\">6<span style=\"font-weight: 400;\">)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\"> (complexo 6) foram sintetizados e caracterizados por RMN de <span style=\"font-weight: 400;\">1<span style=\"font-weight: 400;\">H , FTIR, voltametria cíclica e espectrofotometria UV-Vis. Nas purificações dos complexos derivados do precursor [RuCl<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">(bpy)<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">].H<span style=\"font-weight: 400;\">2<span style=\"font-weight: 400;\">O foram necessários o uso da coluna de sílica gel. Os complexos 1, 2, 3 e 4 foram irradiados em solução de acetonitrila e os novos ligantes sintetizados nesse trabalho foram substituídos. Com o complexo 6 e norborneno foi possível formar o polinorborneno com o metalomonômero ligado à cadeia. Esse polímero foi caracterizado por espectrofotometria UV-Vis, fluorimetria, GPC e TGA. <span style=\"font-weight: 400;\">Obteve-se M<span style=\"font-weight: 400;\">w<span style=\"font-weight: 400;\"> = 3,7x10<span style=\"font-weight: 400;\">5<span style=\"font-weight: 400;\"> g/mol e IPD = 2,3 ± 0,2, com estabilidade térmica até 250 °C<span style=\"font-weight: 400;\">. O polímero manteve as características físicas e químicas do polinorborneno e do metalomonômero. |