Propriedades de Jordan em anéis de grupo

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Geraldo, Anderson
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24082019-195149/
Resumo: GERALDO, A. Propriedades de Jordan em anéis de grupo. 2019. Dissertação (Mestrado) - Insti- tuto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2019. Neste trabalho estudamos alguns resultados a respeito do conjunto dos elementos que são simétricos sobre uma involução, orientada ou não, de um anel de grupo. Dado um anel de grupo RG, onde R é comutativo e com elemento identidade 1, e uma involução orientada # ; apre- sentamos as condições necessárias e suficientes sobre R e G para que o subconjunto (RG) + = { RG # = } seja anticomutativo, ou equivalentemente, o produto de Jordan seja trivial em (RG) + . Além disso, estudamos um caso de nilpotência de Jordan no anel de grupo RG e no seu subconjunto (RG) + , para o caso onde a involução não possui orientação.