On the Generalized Finite Element Method in nonlinear solid mechanics analyses

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Piedade Neto, Dorival
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-20012014-094606/
Resumo: The Generalized Finite Element Method (GFEM) is a numerical method based on the Partition of Unity (PU) concept and inspired on both the Partition of Unity Method (PUM) and the hp-Cloud method. According to the GFEM, the PU is provided by first-degree Lagragian interpolation functions, defined over a mesh of elements similar to the Finite Element Method (FEM) meshes. In fact, the GFEM can be considered an extension of the FEM to which enrichment functions can be applied in specific regions of the problem domain to improve the solution. This technique has been successfully employed to solve problems presenting discontinuities and singularities, like those that arise in Fracture Mechanics. However, most publications on the method are related to linear analyses. The present thesis is a contribution to the few studies of nonlinear analyses of Solid Mechanics by means of the GFEM. One of its main topics is the derivation of a segment-to-segment generalized contact element based on the mortar method. Material and kinematic nonlinear phenomena are also considered in the numerical models. An Object-Oriented design was developed for the implementation of a GFEM nonlinear analyses framework written in Python programming language. The results validated the formulation and demonstrate the gains and possible drawbacks observed for the GFEM nonlinear approach.