Predição não-linear de séries temporais usando sistemas de arquitetura neuro-fuzzy.

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Sandmann, Humberto Rodrigo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-01042009-095125/
Resumo: Esta dissertação tem como objetivo a aplicação de sistemas com arquitetura neuro-fuzzy na predição de funções que geram séries temporais. A arquitetura pesquisada é a Adaptive Neuro-Fuzzy Inference System (ANFIS). Esta arquitetura se trata de um Fuzzy Inference Systems (FIS) im- plementado sob o paradigma das redes neurais artificiais. Ao fazer o uso da tecnologia de redes neurais artificiais, o ANFIS possui a capacidade de apren- dizagem dos dados do ambiente no qual está inserido. Da mesma forma, por implementar um FIS, o ANFIS agrega também a competência de processamento linguístico. Logo, o ANFIS pode ser categorizado como um sistema híbrido. Ao longo dos capítulos estão expostos alguns conceitos e fundamentos da Teoria Fuzzy, assim como das redes neurais artificiais e sistemas híbridos. Ao final do trabalho são realizadas algumas discussões, análises e conclusões, as quais permitem a possibilidade de futuras aplicações e extensão deste.