Existência de Soluções Periódicas para uma Classe de Equações Diferenciais Funcionais Retardadas e Aplicações

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Weissmann, Marcio Roberto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032018-114004/
Resumo: Estamos interessados no estudo da equação: - x(t) = λx(t) + λf(x(t-1)), λ > 0. (0.1) Sob algumas hipóteses gerais a respeito de f : R → R, nós primeiramente investigamos a existência de soluções periódicas lentamente oscilantes de (0.1). Em seguida, a existência de um contínuo ilimitado de tais soluções que aparece por bifurcação de Hopf é estabelecida. Finalmente, algumas aplicações a modelos biológicos e físicos são feitas.