Simulação de mamografia digital por dupla energia para imagens quantitativas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Godeli Neto, Julio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-22092016-110542/
Resumo: A técnica de mamografia por dupla energia tem se mostrado uma ferramenta eficiente para aumentar a visualização e detecção de microcalcificações, uma vez que permite, por meio da combinação de imagens obtidas com energias diferentes (baixa e alta energia), suprimir o ruído estrutural. Por outro lado, pesquisas recentes sugerem que esta técnica permite a obtenção de imagens quantitativas das espessuras de microcalcificações e frações glandulares presentes nos tecidos mamários. O presente trabalho tem como objetivo, o estudo e otimização de imagens quantitativas obtidas através da técnica de mamografia por dupla energia. Este estudo foi realizado por simulação computacional, utilizando o código PENELOPE (Penetrarion and Energy Loss of Positrons and Electrons), o qual foi adaptado para fornecer imagens mamográficas digitais e dados relevantes para o estudo da formação da imagem, bem como fornecer as grandezas dosimétricas de interesse nesta técnica. Para isto, a geometria de um típico exame clínico foi simulado,considerando desde o equipamento mamográfico digital (fonte, placa compressora, suporte e detector), até a mama (pele, gordura, tecidos glandulares e microcalcificações). A validação das adaptações ao código foi feita através da comparação entre os valores de razão espalhado-primário (SPR) e dose glandular normalizada (DgN) gerados neste trabalho, com aqueles presentes na literatura. Finalmente, todos os elementos da cadeia da formação de imagens quantitativas foram implementados e avaliados, consistindo de (i) um algoritmo de pré-processamento, que permite corrigir a contribuição do espalhamento nas imagens, com desempenho superior a 95%; (ii) um algoritmo de pós-processamento nas imagens combinadas (baixa e alta energia) que permite corrigir o aumento do ruído decorrente do pré-processamento e da combinação das imagens, com desempenho de 90%. Os resultados de otimização foram adquiridos para diversas características de mama (espessuras de 2 a 6 cm e frações glandulares entre 25 e 75%) e avaliados para diferentes tamanhos de calcificações. As combinações ótimas de energias (baixa;alta) para mamas com espessuras de 2, 4 e 6 cm foram (16;62), (19;56) e (22;56) keV, respectivamente. As combinações escolhidas como ótimas conseguiram estimar as espessuras das microcalcificações com exatidão superior a 92% e a fração glandular com exatidão superior a 95%.