Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Damm, Ricardo de Brito |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3136/tde-23062016-154154/
|
Resumo: |
Um tema pouco estudado na literatura, mas frequentemente encontrado por empresas prestadoras de serviço, é o Problema de Escalonamento de Técnicos de Campos (Field Technician Scheduling Problem). O problema consiste em associar um número de tarefas - em diversos locais, com diferentes prioridades e com janelas de tempo - a uma quantidade de técnicos - com diferentes horários de expediente e com habilidades distintas - que saem no início do horário de trabalho da sede da empresa, para onde devem retornar antes do fim do expediente. Cada tarefa é atendida por um único técnico. Esse problema é estudado neste trabalho. A primeira parte do trabalho apresenta um modelo de programação linear inteira mista (PLIM) e, dada a complexidade do problema, heurísticas construtivas e meta-heurísticas foram desenvolvidas. Na função objetivo, procura-se principalmente maximizar o número ponderado de tarefas executadas em um dia de trabalho, de acordo com as suas prioridades. Em linhas gerais, as heurísticas construtivas ordenam as tarefas de acordo com um critério pré-estabelecido e, em seguida, designam cada uma a um dos técnicos capazes de realiza-la sem violar as restrições do problema. Tendo em conta o bom desempenho obtido em outros problemas semelhantes, foi adotado um Algoritmo Genético denominado Biased Random-Key Genetic Algorithms (BRKGA), que utiliza chaves aleatórias para codificar e decodificar as soluções. Codificadores e decodificadores adaptados ao problema foram desenvolvidos e testes computacionais são apresentados. As soluções obtidas em problemas de pequenas dimensões são comparadas com as soluções ótimas conhecidas e, para aprimorar a avaliação do desempenho nas instâncias médias e grandes, quatro procedimentos para obter limitantes superiores foram propostos. Testes computacionais foram realizados em 1040 instâncias. O BRKGA encontrou 99% das 238 soluções ótimas conhecidas e, nas 720 instâncias de dimensões médias e grandes, ficou em média a 3,8% dos limitantes superiores. As heurísticas construtivas superaram uma heurística construtiva da literatura em 90% das instâncias. A segunda parte do trabalho apresenta uma nova abordagem para o Problema de Escalonamento de Técnicos de Campo: um modelo biobjetivo, onde uma segunda função objetivo buscará que as tarefas prioritárias sejam realizadas o mais cedo possível. Uma versão multiobjectivo do BRKGA foi desenvolvida, considerando diversas estratégias para classificar a população do algoritmo e escolher as melhores soluções (estratégias de elitismo). Codificadores e decodificadores foram criados para o problema multiobjectivo. Os resultados computacionais obtidos são comparados com os resultados de um Algoritmo Genético conhecido na literatura, o Nondominated Sorting Genetic Algorithm II (NSGA II). Para instâncias de pequenas dimensões, os resultados da meta-heurística proposta também são comparados com a fronteira ótima de Pareto de 234 instâncias, obtidas por enumeração completa. Em média, o BRKGA multiobjectivo encontrou 94% das soluções da fronteira ótima de Pareto e, nas instâncias médias e grandes, superou o desempenho do NSGA-II nas medidas de avaliação adotadas (porcentagem de soluções eficientes, hipervolume, indicador epsílon e cobertura). |