FS-OPA: combinação de otimização baseada em análise de filogramas e regressão de cox aplicada a conjuntos de dados de transtornos mentais

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Kharrat, Fatemeh Gholi Zadeh
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/82/82131/tde-27022020-170654/
Resumo: Os conjuntos de dados digitais em vários hospitais acumularam dados de milhares de pacientes por mais de uma década. Em geral, não há equipe com especialistas suficientes, com as diferentes habilidades necessárias, capazes de analisá-las por inteiro. A integração dessas habilidades geralmente exige um período relativamente longo e custa. Este projeto propõe uma nova técnica de Sensibilidade aos recursos (FS) que pode lidar automaticamente com um grande conjunto de dados. Ele usa uma estratégia de amostragem baseada em critérios da Otimização baseada em Análise de Filogramas (OPA). Chamada FS-opa, a nova abordagem parece adequada para lidar com qualquer tipo de dados brutos dos centros de saúde e manipular todo o conjunto de dados. Além disso, o FS-OPA pode encontrar os principais recursos para a construção de modelos de inferência sem depender do conhecimento especializado do domínio do problema. Os recursos selecionados podem ser combinados com métodos usuais de estatística ou aprendizado de máquina para realizar previsões. O novo método pode extrair conjuntos de dados inteiros do zero. O FS-opa foi avaliado usando um conjunto de dados relativamente grande de hospitais com transtornos mentais no Brasil. A abordagem de Cox foi integrada ao FS-opa para gerar modelos de análise de sobrevida relacionados ao tempo de permanência (LOS) em hospitais, assumindo que é um aspecto relevante que pode beneficiar estimativas da eficiência dos hospitais e da qualidade dos tratamentos dos pacientes. Como o FS-opa pode trabalhar com conjuntos de dados brutos, nenhum conhecimento do domínio do problema foi usado para obter os modelos de previsão preliminares encontrados. Os resultados mostram que o FS-opa conseguiu realizar uma análise de sensibilidade dos recursos usando apenas os dados brutos disponíveis. Dessa forma, o FS-opa pode encontrar os principais recursos sem viés de um modelo de inferência, uma vez que o método proposto não o utiliza. Além disso, os experimentos mostram que o FS-opa pode fornecer aos modelos uma troca útil de acordo com sua representatividade e parcimônia. Pode beneficiar análises adicionais por especialistas, pois eles podem se concentrar em aspectos que beneficiam a modelagem de problemas.