T-junções, T-cortes e funções conservativas

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Rey, Mario Leston
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-205403/
Resumo: O problema da determinação de uma T-junção mínima e os desdobramentos desse problema constituem o assunto central desta dissertação. Determinar uma T-junção mínima é equivalente a decidir se um grafo com pesos mais ou menos 1 nas arestas é livre de circuitos negativos. Exploramos o problema sob esta ótica e apresentamos o Teorema de Sebö-Lucchesi que caracteriza grafos livre de circuitos negativos. Apresentamos, também, o algoritmo de Sebö que determina caminhos de peso mínimo em grafos sem circuitos negativos. Algoritmos que determinam uma T-junção mínima produzem também uma coleção 2-disjunta máxima de T-cortes. Já a determinação de uma coleção 1-disjunta máxima é um problema difícil. Discutimos o algoritmo de Korach e Pennque extrai de uma coleção 2-disjunta máxima de T-cortes uma coleção 1-disjunta 'grande'. O estudo de T-junções mínimas leva naturalmente à consideração de conjuntos máximos de arestas negativas que não induzem circuitos negativos. Apresentamos uma relação minimax, devida a Frank, entre tais conjuntos de arestas e decomposições do grafo em orelhas