Análise de dados categorizados com omissão

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Poleto, Frederico Zanqueta
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
MAR
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-04122007-192457/
Resumo: Neste trabalho aborda-se aspectos teóricos, computacionais e aplicados de análises clássicas de dados categorizados com omissão. Uma revisão da literatura é apresentada enquanto se introduz os mecanismos de omissão, mostrando suas características e implicações nas inferências de interesse por meio de um exemplo considerando duas variáveis respostas dicotômicas e estudos de simulação. Amplia-se a modelagem descrita em Paulino (1991, Brazilian Journal of Probability and Statistics 5, 1-42) da distribuição multinomial para a produto de multinomiais para possibilitar a inclusão de variáveis explicativas na análise. Os resultados são desenvolvidos em formulação matricial adequada para a implementação computacional, que é realizada com a construção de uma biblioteca para o ambiente estatístico R, a qual é disponibilizada para facilitar o traçado das inferências descritas nesta dissertação. A aplicação da teoria é ilustrada por meio de cinco exemplos de características diversas, uma vez que se ajusta modelos estruturais lineares (homogeneidade marginal), log-lineares (independência, razão de chances adjacentes comum) e funcionais lineares (kappa, kappa ponderado, sensibilidade/especificidade, valor preditivo positivo/negativo) para as probabilidades de categorização. Os padrões de omissão também são variados, com omissões em uma ou duas variáveis, confundimento de células vizinhas, sem ou com subpopulações.