Processos de polimerização e transição de colapso em polímeros ramificados.

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Neves, Ubiraci Pereira da Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-09102008-133038/
Resumo: Estudamos o diagrama de fases e o ponto tricrítico da transição de colapso em um modelo de animais na rede quadrada, a partir da expansão em série da compressibilidade isotérmica KT do sistema. Como função das variáveis x (fugacidade) e y = e1/T (T é a temperatura reduzida), a serie KT é analisada utilizando-se a técnica dos aproximantes diferenciais parciais. Determinamos o padrão de fluxo das trajetórias características de um típico aproximante diferencial parcial com ponto fixo estável. Obtemos estimativas satisfatórias para a fugacidade tricrítica Xt = 0.024 &#177 0.005 e a temperatura tricritica Tt = 0.54 &#177 0.04. Considerando somente campos de escala lineares, obtemos também o expoente de escala &#947 = 1.4 &#177 0.2 e o expoente \"crossover\" &#934 = 0.66 &#177 0.08. Nossos resultados estão em boa concordância com estimativas prévias obtidas por outros métodos. Também estudamos um processo de polimerização ramifIcada através de simulações computacionais na rede quadrada baseadas em um modelo de crescimento cinético generalizado para se incorporar ramifIcações e impurezas. A configuração do polímero e identificada com uma árvore-ligação (\"bond tree\") a fim de se examinar os aspectos topológicos. As dimensões fractais dos aglomerados (\"clusters\") são obtidas na criticalidade. As simulações também permitem o estudo da evolução temporal dos aglomerados bem como a determinação das auto-correlações temporais e expoentes críticos dinâmicos. Com relação aos efeitos de tamanho finito, uma técnica de cumulantes de quarta ordem e empregada para se estimar a probabilidade de ramificação critica bc e os expoentes críticos v e &#946. Na ausência de impurezas, a rugosidade da superfície e descrita em termos dos expoentes de Hurst. Finalmente, simulamos este modelo de crescimento cinético na rede quadrada utilizando um método de Monte Carlo para estudar a polimerização ramificada com interações atrativas de curto alcance entre os monômeros. O diagrama de fases que separa os regimes de crescimento finito e infinito e obtido no plano (T,b) (T é a temperatura reduzida e b é a probabilidade de ramificação). No limite termodinâmico, extrapolamos a temperatura T&#8727 = 0.102 &#177 0.005 abaixo da qual a fase e sempre infinita. Observamos também a ocorrência de uma transição de rugosidade na superfície do polímero.