Exploring genetic biodiversity: secondary metabolites from Neotropical Annonaceae as a potential source of new pesticides

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Ribeiro, Leandro do Prado
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11146/tde-05052014-143830/
Resumo: To investigate potential sources of novel grain protectors, this study evaluated, firstly, the bioactivity of ethanolic extracts (66) prepared from 29 species belonging to 11 different genera of Neotropical Annonaceae against the maize weevil Sitophilus zeamais (Coleoptera: Curculionidae). A screening assay demonstrated that the most pronounced effects (acute and chronic) on S. zeamais were caused by extracts from the Annona montana, A. mucosa, A. muricata and A. sylvatica seeds, and, to a lesser extent, by extracts prepared from leaves of A. montana, A. mucosa, A. muricata, and Duguetia lanceolata. However, the most active extracts (from seeds) did not affect fungal growth and aflatoxin production of Aspergillus flavus (Ascomycota: Trichocomaceae). Using the maize weevil as bioindicator, bioguided fractionations were then conducted in order to isolate, purify and characterize the possible active compound(s) from the most interesting extracts. By means of different chromatographic procedures, nine compounds (five acetogenins, three steroids, and one aromatic compound) were isolated. The acetogenins rolliniastatin-1 and ACG4 (structural determination in progress) and the aromatic compound 2,4,5- trimethoxystyrene as well as the steroids campesterol, stigmasterol, and sitosterol [tested in mixture (8.44 + 12.37 + 79.19%, respectively)] showed promising grain protective properties. Furthermore, the obtained results indicate that compounds from different chemical natures have a synergistic effect on the overall biological activity of the crude extracts. In a second study, the acute and chronic toxicity of selected ethanolic seed extracts from Annona species (A. montana, A. mucosa, A. muricata, and A. sylvatica) and an acetogenin-based commercial bioinsecticide (Anosom® 1EC) were investigated against the cabbage looper Trichoplusia ni (Lepidoptera: Noctuidae) and the green peach aphid Myzus persicae (Hemiptera: Aphididae). In the laboratory, extracts of A. mucosa and A. sylvatica as well as Anosom® were especially active through oral and topical administration. A greenhouse trial showed that a formulated A. mucosa extract and Anosom® were highly effective (>98% mortality) against third instar of T. ni larvae, and comparable to a pyrethrin-based commercial insecticide (Insect Spray®) used as a positive control. Similar to results with T. ni, A. mucosa extract showed the greatest aphicidal either in laboratory or greenhouse bioassays. In a third study, the acaricidal activity [against the citrus red mite Panonychus citri (Acari: Tetranychidae)] of the ethanolic extract from A. mucosa seeds (most active) was investigated. In laboratory tests, it exhibited levels of activity superior to commercial acaricides/insecticides of natural origin [Anosom® 1EC (annonin), Derisom® 2EC (karanjin), and Azamax® 1.2EC (azadirachtin + 3- tigloylazadirachtol)] and similar to a synthetic acaricide [Envidor® 24 SC (spirodiclofen)]. Finally, the compatibility of A. mucosa seed extract with three entomopathogenic fungi species (Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae) was assessed. In overall, it was compatible with the three entomopathogenic fungi species when tested at recommended concentrations for target pest species control. Therefore, this study argues for the use of derivatives from Neotropical Annonaceae as a useful component in the framework of integrated pest management (IPM) programs.