Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Gimenes, Gabriel Perri |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062015-105026/
|
Resumo: |
Applications such as electronic commerce, computer networks, social networks, and biology (protein interaction), to name a few, have led to the production of graph-like data in planetary scale { possibly with millions of nodes and billions of edges. These applications pose challenging problems when the task is to use their data to support decision making processes by means of non-obvious and potentially useful patterns. In order to process such data for pattern discover, researchers and practitioners have used distributed processing resources organized in computational clusters. However, building and managing such clusters can be complex, bringing technical and financial issues that can be prohibitive in a variety of scenarios. Alternatively, it is desirable to process large scale graphs using only one computational node. To do so, we developed processes and algorithms according to three different approaches, building up towards an analytical set capable of revealing patterns, comprehension, and to help with the decision making process over planetary-scale graphs. |