Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Costa, Arthur Fortes da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042015-153225/
|
Resumo: |
A oferta de produtos,informação e serviços a partir de perfis de usuários tem tornado os sistemas de recomendação cada vez mais presentes na Web, aumentando a facilidade de escolha e de permanência dos usuários nestes sistemas. Entretanto, existem otimizações a serem feitas principalmente com relação à modelagem do perfil do usuário. Geralmente, suas preferências são modeladas de modo superficial, devido à escassez das informações coletadas,como notas ou comentários, ou devido a informações indutivas que estão suscetíveis a erros. Esta dissertação propõe uma ferramenta de recomendação baseado em interações multimodais, capaz de combinar informações de usuários processadas individualmente por algoritmos de recomendação tradicionais. Nesta ferramenta desenvolveram-se quatro técnicas de combinação afim fornecer aos sistemas de recomendação, subsídios para melhoria na qualidade das predições em diversos domínios. |