Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Costerano Guadagnin, Hellen |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3137/tde-20072017-152947/
|
Resumo: |
Aluminium alloys are widely used in the aerospace industry due to their lightweight and high specific strength. However, these alloys are particularly sensitive to localized corrosion in chloride environments and need to be protected by a robust system. One of the protection methodologies consists in anodizing. The produced layer increases the corrosion resistance and also serves as anchoring site for organic coatings application. Chromium-based anodizing has been usually employed, nevertheless, as chromate compounds are toxic for health and the environment, chromium-based surface treatments will be prohibited in the aerospace industry in a near future. Tartaric-sulphuric acid (TSA) anodizing is a promising environment compliant alternative, which is already being used at industrial level with appropriate corrosion protection and paint adhesion properties. This study aims at proposing a hybrid sol-gel treatment after TSA anodizing of AA2524 specimens in order to improve the corrosion resistance of the anodized layer while maintaining its compatibility with organic coatings. For this, anodic aluminium oxides (AAO) were produced at different anodizing voltages and protected by dip-coating with a hybrid sol-gel layer obtained from a tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) hydrolysis solution with high water content. Corrosion resistance evaluation was carried out by means of electrochemical impedance spectroscopy (EIS) in NaCl 0.1 mol L-1 and salt-spray chamber exposure (ASTM B117-11 standard). The morphology of the anodic porous layer was investigated by means of FE-SEM, whereas glow discharge optical emission spectroscopy (GDOES) was employed to evaluate the distribution of the sol-gel layer within the porous AAO. FE-SEM characterization confirmed that the layer properties (pore distribution, porosity and thickness) were strongly dependent on the anodizing conditions, whereas GDOES depth profile showed penetration of the hybrid coating within the pores of the anodized layer. The two characterization techniques showed inefficient surface sol-gel coverage for the samples anodized at higher voltage, likely due to insufficient sol-gel deposition. The results of the EIS characterization tests up to 1008 h (42 days) showed that, irrespectively to the anodizing voltage, the hybrid sol-gel protected AAO was stable with only slight evolution of the diagrams with immersion time. Moreover, the hybrid coating protected samples presented higher low frequency impedance modulus than hydrothermally sealed (HTSed) reference TSA anodized samples, which was confirmed by electrical equivalent circuit (EEC) fitting of the EIS data. EEC fitting also revealed that the resistance of the pores to electrolyte penetration was increased by the application of the sol-gel coating when compared to the resistance of the HTSed reference samples and indicated better anticorrosion performance for the sample anodized at 16 V. These results were confirmed by the salt-spray tests. Investigation on the ageing of the hybrid sol-gel hydrolysis solution showed that its viscosity hardly changed up to two weeks of test and that hybrid coatings applied from these solutions were stable and afforded good corrosion protection to the TSA anodized substrate, an improvement of the anticorrosion properties of the hybrid coating was verified for an ageing time of 168 h. Preliminary tests performed with a solvent-free organic coating (epoxy) indicated good compatibility with the hybrid TEOS-GPTMS coating characterized by very high impedance and good stability upon exposure to the salt-spray chamber. |