Detalhes bibliográficos
Ano de defesa: |
1993 |
Autor(a) principal: |
Barros, Antonio Cesar da Costa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17082018-095102/
|
Resumo: |
Neste trabalho apresentamos resultados que relacionam o número de cúspides de uma aplicação genérica f : M → N, onde M e N são superfícies (M compacta), à possibilidade de f se fatorar por uma imersão g: M → N x R e à caracteristica de Euler-Poincaré de determinadas sub-variedades de M. Em seguida, nos ocupamos com um resultado sobre eliminação de cúspides, cuja demonstração nos leva a entender o fato geométrico que impede que determinadas aplicações se fatorem por uma imersão. Finalmente, apresentamos resultados que estendem os anteriores a situações mais gerais. |