Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Marinho, Ronnie Shida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23102018-172800/
|
Resumo: |
Com o intuito de auxiliar usuários na procura por produtos relevantes, sistemas Web integraram módulos de recomendação de itens, que selecionam automaticamente conteúdo de acordo com os interesses de cada indivíduo. Apesar de existirem diversas abordagens para calcular recomendações de acordo com interações disponíveis no sistema, a maioria delas sofre com a carência de informações utilizadas para caracterizar as preferências dos usuários e as descrições dos itens. Trabalhos recentes sobre sistemas de recomendação têm estudado a possibilidade de utilizar revisões de usuários como fonte de metadados, já que são criadas colaborativamente pelos indivíduos. Entretanto, ainda carecem de estudos sobre como organizar e estruturar os dados de maneira semântica. Desta maneira, este trabalho tem como objetivo desenvolver técnicas de construção de representação de itens baseadas em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que métodos distintos de desambiguação lexical de sentido causam na precisão da recomendação, sendo avaliada no cenário de predição de notas. A partir dessa estruturação, é possível caracterizar os itens e usuários de maneira mais eficiente, favorecendo o cálculo da recomendação de acordo com as preferências do indivíduo. |