Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Castro, Daniele Oliveira de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/75/75134/tde-10122014-161805/
|
Resumo: |
O polietileno de alta densidade utilizado neste trabalho foi obtido em escala industrial pela polimerização de eteno, gerado a partir do etanol de cana de açúcar. Este polímero é também chamado de biopolietileno (BPEAD), por ser preparado a partir de material oriundo de fonte natural. O BPEAD foi usado como matriz em compósitos reforçados por fibras de curauá em proporções em massa variando de 5 a 20%, 1 cm de comprimento. Óleo de mamona (CO), óleo de canola (CA), óleo de linhaça epoxidado (OLE) e óleo de soja epoxidado (OSE) foram usados na preparação dos compósitos (5, 10, 15 e 20%) visando atuação como agentes compatibilizantes, uma vez que o CO, CA, OLE e OSE têm cadeias hidrocarbônicas com afinidade pelo biopolietileno, e grupos hidroxilas com afinidades pelos grupos polares presentes nas fibras. Os compósitos foram caracterizados por microscopia eletrônica de varredura (MEV), Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG), Análise Dinâmico-Mecânica (DMA) e propriedades mecânicas (impacto e flexão). Os resultados de impacto, flexão e DMA apresentados pelos compósitos mostraram que a incorporação dos óleos nas diferentes composições, principalmente CO, no geral levou a melhores propriedades quando comparados aos compósitos BPEAD/Fibra, indicando uma possível ação dos óleos como compatibilizante na interface fibra/matriz. O compósito BPEAD/15%CO/15%Fibra apresentou uma maior resistência ao impacto (280 J m-1) se comparado ao BPEAD (234 J m-1), indicando o efeito compatibilizante do CO. As propriedades de compósitos (BPEAD/5%CO, CA, OSE ou OLE/10%Fibra) reforçados com curauá (3mm), processados em misturador interno e termoprensados foram comparadas com aqueles processados por extrusão e moldados por injeção. A resistência ao impacto dos compósitos processados via extrusão BPEAD/CO (287 J m-1), CA (240 J m-1) ou OSE/Fibra (222 J m-1) foi maior quando comparada aos compósitos processados via misturador interno BPEAD/CO (114 J m-1), CA (123 J m-1) ou OSE/Fibra (110 J m-1). A análise de DMA também mostrou que o compósito BPEAD/5%CO/10%Fibra preparado por extrusão/injeção apresentou maior módulo de armazenamento (E´) a 30°C de 1660 MPa, enquanto que o compósito processado via misturador interno apresentou E´ de 1219 MPa. Comparando as propriedades mecânicas dos compósitos processados por extrusão/injeção com a dos processados por misturador interno Haake/termoprensagem, conclui-se que extrusão/injeção é um processo mais eficiente para a preparação de compósitos de fibras curtas. O presente estudo também avaliou o potencial de aplicação de nanocristais de celulose (NCC) em filmes baseados em BPEAD. NCCs foram obtidos a partir da hidrólise ácida da fibra de curauá, e foram utilizados (3, 6 e 9 %) na preparação de filmes de BPEAD, visando à obtenção de nanocompósitos. Os nanocompósitos reforçados com nanocristais de curauá foram processados por extrusão, também usando CO (3, 6 e 9%), visando avaliar a ação do mesmo como agente de dispersão de NCC na matriz apolar de BPEAD. A partir dos resultados obtidos para estes filmes, a porcentagem de NCC foi fixada em 3%, e 3% como porcentagem de óleo vegetal, por terem sido estas as condições que levaram ao melhor conjunto de resultados. Além de CO, OSE e OLE também foram usados e, além do processamento extrusão, extrusão/termoprensagem também foi considerado, a fim de comparar as propriedades obtidas nos dois processamentos. Os filmes foram caracterizados por calorimetria exploratória diferencial, termogravimetria, DMA, ensaio de tração, MEV e reologia. A análise de DMA mostrou que a presença de NCC leva a um material mais rígido, e o uso de óleos vegetais na preparação de filmes, levou a uma distribuição mais homogênea dos NCCs na matriz de BPEAD e a uma melhor adesão na interface, evidenciando o efeito compatibilizante dos óleos. As propriedades óticas dos nanocompósitos indicaram que a presença dos óleos levou a filmes menos opacos, para ambos os tipos de processamentos usados. Com relação aos diferentes processamentos usados na preparação dos filmes baseados em BPEAD, óleos e nanocristais, o melhor conjunto de resultados, com destaque para aqueles obtidos no ensaio de tração, foram resultantes do processamento via extrusão/termoprensagem, indicando que este processamento deve favorecer a dispersão de NCCs na matriz de BPEAD. Os resultados desse trabalho apontaram para boas perspectivas para o uso de nanocristais de celulose em filmes baseados em BPEAD (ou PEAD), utilizando óleos vegetais como compatibilizantes e também mostraram que é possível obter melhorias nas propriedades dos nanocompósitos através de processos mais adequados para a escala industrial, como a extrusão. No presente estudo, contribuiu-se para com o desenvolvimento de materiais que, dentre outras propriedades, na sua produção, utilização e substituição, ocorra menor emissão de CO2 para a atmosfera, comparativamente a outros materiais. |