FATOR DE BAYES A POSTERIORI PARA COMPARAR OS COEFICIENTES DE MODELOS DE REGRESSÂO

Detalhes bibliográficos
Ano de defesa: 1993
Autor(a) principal: Cordeiro, Margareth Moreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27082018-101228/
Resumo: Nesta dissertação, abordamos uma análise Bayesiana para comparar os coeficientes de modelos de regressão linear. Esta análise foi baseada no fator Bayes a posteriori introduzido por Aitkin (1991), considerando-se diferentes restrições sobre o modelo adotado e distribuições a priori não informativas. Em todos os modelos adotados observou-se que o fator de Bayes a posteriori não é identificado pela distribuição a priori e pelo tamanho da amostra (paradoxo de Lindley). Fez-se um estudo numérico para comparar o fator de Bayes a posteriori e o teste da razão de verossimilhança, concluindo-se que o fator de Bayes a posteriori é mais eficiente. Também foi proposto um novo critério denominado de teste da razão de entropia a posteriori. Os resultados obtidos através de simulações, quando comparados com o fator de Bayes a posteriori, indicaram que dependendo da escala utilizada o critério proposto é mais eficiente. Desenvolveu-se ainda uma aplicação do fator de Bayes a posteriori para dados relacionados ao desenvolvimento de um sensor de corrente elétrica utilizando fibras ópticas (Vieira, 1992).