Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Fabbri Junior, Carlos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3143/tde-05042021-150339/
|
Resumo: |
O presente trabalho mostra uma nova metodologia para a aquisição de imagens do espectro visível, IR e UV usando um número significativamente menor de amostras do que a teoria convencional de Shannon-Nyquist recomenda. Essa nova metodologia é baseada em uma teoria inovadora e revolucionária chamada de Compressed Sensing ou sensoriamento compressivo. Ela propõe um novo método de captura das informações essenciais da imagem ou objeto sendo amostrados, baseado no conhecimento de que essas informações são esparsas em uma determinada base de representação da informação. Duas características fundamentais para esse feito são a esparsidade da imagem e a incoerência entre a base de representação e a base de medida do objeto. Algoritmos de programação linear foram desenvolvidos para reconstruir a imagem original a partir das amostras obtidas, com alto grau de sucesso. O presente trabalho explica o funcionamento de um destes algoritmos etapa por etapa. Exemplos de imagens reconstruídas usando um dos algoritmos propostos fazem parte do presente trabalho. |