Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Strabeli, Taila Fernanda |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11152/tde-29112016-145434/
|
Resumo: |
Avaliar o estado hídrico das plantas é essencial para o monitoramento das culturas agrícolas e florestais. A interação da radiação eletromagnética com as plantas é um processo estudado por sensoriamento remoto (SR). Através da técnica de SR é possível interpretar os fatores que influenciam na quantidade de energia absorvida, transmitida e refletida pela planta. Neste estudo, buscou-se estabelecer as relações existentes entre variações nos parâmetros da água com o comportamento espectral e gerar modelos matemáticos que sejam capazes de predizer o conteúdo relativo da água (CRA) e espessura equivalente da água (EEA) em 11 diferentes espécies de Eucalyptus, utilizando um sensor hiperespectral. Os dados foram obtidos por meio da pesagem e respectiva leitura espectral das folhas, sendo que estas passaram por uma metodologia de desidratação. Tal metodologia permitiu encontrar uma diferença de reflectância média de 26% entre o máximo e mínimo teor de água na folha, provando a influência do CRA no comportamento espectral, sendo a água um dos fatores de maior domínio na reflectância na região do infravermelho médio (1300nm - 2500nm). A partir das curvas espectrais foi possível avaliar que os comprimentos de onda próximo ao 1400 nm e 1900 nm foram os mais sensíveis ao conteúdo de água. A análise de componentes principais permitiu reforçar estes resultados, uma vez que as pontuações (scores) dos componentes que apresentaram correlações significativas com o CRA tiveram maiores pesos (loadings) nas regiões espectrais citadas anteriormente. A partir das respostas espectrais também foram realizados os cálculos dos índices espectrais já descritos em literatura, e estes submetidos a análise de regressão simples para predição do CRA e EEA. O índice espectral calculado com a combinação de bandas do infravermelho médio (1300nm e 1450nm) foi o que apresentou melhores resultados ao predizer os parâmetros da água, sendo que o SR1300,1450 teve um R2=0,72 para o CRA e R2=0,81 para o EEA. Os dados espectrais foram correlacionados com os parâmetros da água, e encontrou-se que para o CRA o comprimento de onda 1881 nm apresentou um coeficiente de correlação máximo negativo de r= -0,89, enquanto que o EEA apresentou um coeficiente de correlação máximo negativo de r= -0,79 no comprimento de onda 2165 nm. Foram testados três métodos de seleção das variáveis hiperespectrais para gerar um modelo matemático por meio de uma regressão linear. Para o parâmetro CRA, o método de seleção de variáveis stepwise foi o que gerou o maior (R2= 0,86) e um RMSE = 13,85%, sendo que neste método restaram apenas seis variáveis preditoras. Enquanto que o método de seleção de variáveis pelas regiões do espectro foi o mais preciso ao predizer o parâmetro EEA, com um R2= 0,87 e um RMSE = 0,00012 g/cm2, sendo necessárias apenas 5 variáveis espectrais. |