Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Usuga Manco, Olga Cecilia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072013-234405/
|
Resumo: |
A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1). |