Localization versus subradiance in three-dimensional scattering of light

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Moreira, Noel Araujo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-30092019-135237/
Resumo: A blue sky, a white cloud or a red sunset are explained by classical multiple scattering theory of light. However, these phenomena neglect interference occurrence. Once it is taken into account, interference in a disordered medium may actually put a halt to the propagation of light, an effect known as Anderson Localization. Until now, experimental reports of Anderson Localization of light in 3D systems have not been conclusive. Our goal is to understand what are the underlying obstacles, and look for new insights from a theoretical point of view. In this dissertation, the properties of a cloud of two-level atoms scattering light are investigated. The dipole-dipole interaction generates collective modes, some of them, being localized. We found that finite-size effects dominate the lifetime of the localized modes, specifically by the ratio of localization length to their distance to the system boundaries. Localized modes saturates at maximum of 20% even above phase transition. Studying the steady-state regime, the coupling between localized modes and light is weak. Both results agrees with the difficulty of experimental evidence of light localization and promote the link of experiments and theory.