Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Barbirato, João Carlos Cordeiro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-06122017-160241/
|
Resumo: |
O presente trabalho desenvolve uma formulação do Método dos Elementos de Contorno para análise de problemas tridimensionais de fraturamento no regime transiente. Utilizam-se as soluções fundamentais da elastostática para obter a matriz de massa, empregando-se o Método da Reciprocidade Dual e a discretização do domínio por células tridimensionais. Para a integração no tempo são utilizados os algoritmos de Newmark e Houbolt. O fenômeno do fraturamento é abordado através da consideração de um campo de tensões iniciais, introduzindo-se o conceito de dipolos de tensão. Os tensores desenvolvidos que se relacionam aos dipolos, derivados das soluções fundamentais, são também apresentados. É utilizado o modelo de fratura coesiva. O contorno é discretizado utilizando-se elementos triangulares planos com aproximação linear, e elementos constantes para a superfície fictícia de fraturamento. São feitas várias aplicações cujos resultados obtidos confirmam a importância e a adequação da formulação apresentada para os problemas propostos. |