Método dos Elementos de Contorno com a Reciprocidade Dual para a análise transiente tridimensional da mecânica do fraturamento

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Barbirato, João Carlos Cordeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-06122017-160241/
Resumo: O presente trabalho desenvolve uma formulação do Método dos Elementos de Contorno para análise de problemas tridimensionais de fraturamento no regime transiente. Utilizam-se as soluções fundamentais da elastostática para obter a matriz de massa, empregando-se o Método da Reciprocidade Dual e a discretização do domínio por células tridimensionais. Para a integração no tempo são utilizados os algoritmos de Newmark e Houbolt. O fenômeno do fraturamento é abordado através da consideração de um campo de tensões iniciais, introduzindo-se o conceito de dipolos de tensão. Os tensores desenvolvidos que se relacionam aos dipolos, derivados das soluções fundamentais, são também apresentados. É utilizado o modelo de fratura coesiva. O contorno é discretizado utilizando-se elementos triangulares planos com aproximação linear, e elementos constantes para a superfície fictícia de fraturamento. São feitas várias aplicações cujos resultados obtidos confirmam a importância e a adequação da formulação apresentada para os problemas propostos.