Análise e fusão de imagens 2D e 3D com vistas para detecção e classificação de sinais de trânsito verticais em prol da segurança viária com veículos robóticos inteligentes

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Bruno, Diego Renan
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-23072020-180612/
Resumo: Os Veículos Robóticos Inteligentes são aplicados principalmente em beneficio da redução de acidentes de trânsito, possibilitando então reduzir falhas e imprudências humanas com sistemas que utilizam Visão Computacional, Inteligência Artificial, Automação e outras tecnologias, para auxiliar o condutor em sua tarefa de dirigir. Aplicando a robotização, também é possível o aumento do nível da segurança viária por meio do desenvolvimento de veículos autônomos totalmente livres do controle humano e que são programados para navegarem dentro das leis de trânsito. Sendo que as falhas humanas são a causa de mais de 90% para acidentes fatais em todo o mundo. Esta pesquisa de doutorado teve como objetivo principal o estudo, proposta, desenvolvimento, adaptações e testes de um conjunto de técnicas e métodos de Visão Computacional e Inteligência Artificial, com vistas para um sistema de percepcão com fusão de imagens 2D e 3D mais robusto para detecção de sinais de trânsito verticais. Também foi desenvolvido um modelo de Atenção Visual Fuzzy, capaz de analisar a prioridade de cada informação detectada por meio do sistema de percepção, possibilitando então dar suporte para a tomada de decisão do veículo envolvendo situações de emergência (acidentes e obras na via), utilizando como base, os valores de prioridade de cada regra de trânsito. O sistema de Visão Computacional Robótica deve ser capaz de detectar, classificar e analisar a prioridade dos sinais de trânsito verticais utilizados atualmente e, que são funcionais para o trânsito envolvendo motoristas humanos no mundo real, não exigindo adaptações da sinalização. O sistema de visão deve então auxiliar um veículo totalmente autônomo, ou semi-autônomo, a navegar dentro das regras de trânsito locais, assim, detectando informações de grande importância, como: velocidade máxima, parada obrigatória, cones de emergência e cores do semáforo. Em casos de navegação autônoma, apenas o sistema de percepção e análise de sinais de trânsito verticais deve ser utilizado. Já para a navegação semi-controlada, ou seja, com auxílio de um humano, o sistema de visão externo deve trabalhar em conjunto com a análise do condutor e dos dados de controle do veículo, ativando rotinas automáticas corretivas com base nos erros detectados na tarefa de dirigir, possibilitando evitar graves acidentes relacionados com o desrespeito as sinalizações de trânsito e que são gerados por falha humana e imprudência.