Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Mendes, Marcio Almeida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3142/tde-02122011-130155/
|
Resumo: |
Mesmo com a evolução tecnológica em vários setores, a área de enfermagem tem tido investimentos escassos em pesquisa e desenvolvimento capazes de atender suas expectativas, principalmente no campo da inteligência artificial. As expectativas dos enfermeiros convergem à melhora de seus processos clínicos que resultará em uma maior aproximação de seus pacientes. Além disso, há dificuldade em reunir diagnósticos de enfermagem nos hospitais, onde diversos registros clínicos e procedimentos preenchidos manualmente e armazenados ainda em folhas de papel. Esta condição compromete a legibilidade dos documentos envolvidos nos processos hospitalares, e seu arquivamento torna o processo de levantamento de informações moroso, o que acaba por inviabilizar a pesquisa à qual poderia resultar em informações importantes para melhora do processo de tomada de decisões. O objetivo desta dissertação foi trazer o estado da arte em inteligência artificial focado em raciocínio baseado em casos e sua aplicação na sistematização da assistência de enfermagem. No sentido de validar o modelo levantado foi criado um protótipo para apresentar uma aplicação que pudesse auxiliar os enfermeiros em seus processos clínicos, armazenando suas experiências em uma base de casos para futuras pesquisas. O protótipo consistiu em digitalizar diagnósticos de enfermagem pediátrica, e inserção em uma base de casos, com o intuito de avaliar a eficácia do protótipo na manipulação destes casos, em uma estrutura propicia para recuperação, adaptação, indexação e comparação de casos. Esta dissertação apresenta como resultado uma ferramenta computacional para a área da saúde, empregando uma das técnicas de inteligência artificial, Raciocínio Baseados em Casos. Os resultados foram satisfatórios devido ao alto índice de aprovação nos quesitos confiabilidade, funcionalidade, usabilidade e eficiência conforme as normas ISO/ABNT de qualidade em software. |