Uma abordagem de predição da dinâmica comportamental de processos para prover autonomia a ambientes distribuídos

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Dodonov, Evgueni
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05082009-205709/
Resumo: A evolução de sistemas distribuídos resultou em aumento significativo de complexidade para manutenção e gerenciamento, tornando pouco eficientes técnicas convencionais baseadas em intervenções manuais. Isso motivou pesquisas que deram origem ao paradigma de computação autônoma (Autonomic Computing), que provê aspectos de auto-configuração, auto-recuperação, auto-otimização e auto-proteção a fim de tornar sistemas auto-gerenciáveis. Nesse contexto, esta tese teve como objetivo prover autonomia a ambientes distribuídos, sem a necessidade de mudar o paradigma de programação e as aplicações de usuários. Para isso, propôs-se uma abordagem que emprega técnicas para compreensão e predição de dinâmicas comportamentais de processos, utilizando abordagens de sistemas dinâmicos, inteligência artificial e teoria do caos. Os estudos realizados no decorrer desta pesquisa demonstraram que, ao predizer padrões comportamentais, pode-se otimizar diversos aspectos de computação distribuída, suportando tomadas de decisão autônomas pelos ambientes. Para validar a abordagem proposta, foi desenvolvida uma política de escalonamento distribuído, denominada PredRoute, a qual utiliza o conhecimento sobre o comportamento de processos para otimizar, transparentemente, a alocação de recursos. Experimentos realizados demonstraram que essa política aumenta o desempenho em até 4 ordens de grandeza e apresenta baixo custo computacional, o que permite a sua adoção para escalonamento online de processos