Reconstrução de imagens por tomografia por impedância elétrica utilizando recozimento simulado massivamente paralelizado.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Tavares, Renato Seiji
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
GPU
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-25082016-074902/
Resumo: A tomografia por impedância elétrica é uma modalidade de imageamento médico recente, com diversas vantagens sobre as demais modalidades já consolidadas. O recozimento simulado é um algoritmo que apresentada qualidade de solução, mesmo com a utilização de uma regularização simples e sem informação a priori. Entretanto, existe a necessidade de reduzir o tempo de processamento. Este trabalho avança nessa direção, com a apresentação de um método de reconstrução que utiliza o recozimento simulado e paralelização massiva em GPU. A paralelização das operações matriciais em GPU é explicada, com uma estratégia de agendamento de threads que permite a paralelização efetiva de algoritmos, até então, considerados não paralelizáveis. Técnicas para sua aceleração são discutidas, como a heurística de fora para dentro. É proposta uma nova representação de matrizes esparsas voltada para as características da arquitetura CUDA, visando um melhor acesso à memória global do dispositivo e melhor utilização das threads. Esta nova representação de matriz mostrou-se vantajosa em relação aos formatos mais utilizados. Em seguida, a paralelização massiva do problema inverso da TIE, utilizando recozimento simulado, é estudada, com uma proposta de abordagem híbrida com paralelização tanto em CPU quanto GPU. Os resultados obtidos para a paralelização do problema inverso são superiores aos do problema direto. A GPU satura em aproximadamente 7.000 nós, a partir do qual o ganho em desempenho é de aproximadamente 5 vezes. A utilização de GPUs é viável para a reconstrução de imagens de tomografia por impedância elétrica.