Sistema de hardware reconfigurável para navegação visual de veículos autônomos

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Dias, Mauricio Acconcia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012017-164142/
Resumo: O número de acidentes veiculares têm aumentado mundialmente e a principal causa associada a estes acidentes é a falha humana. O desenvolvimento de veículos autônomos é uma área que ganhou destaque em vários grupos de pesquisa do mundo, e um dos principais objetivos é proporcionar um meio de evitar estes acidentes. Os sistemas de navegação utilizados nestes veículos precisam ser extremamente confiáveis e robustos o que exige o desenvolvimento de soluções específicas para solucionar o problema. Devido ao baixo custo e a riqueza de informações, um dos sensores mais utilizados para executar navegação autônoma (e nos sistemas de auxílio ao motorista) são as câmeras. Informações sobre o ambiente são extraídas por meio do processamento das imagens obtidas pela câmera, e em seguida são utilizadas pelo sistema de navegação. O objetivo principal desta tese consiste do projeto, implementação, teste e otimização de um comitê de Redes Neurais Artificiais utilizadas em Sistemas de Visão Computacional para Veículos Autônomos (considerando em específico o modelo proposto e desenvolvido no Laboratório de Robótica Móvel (LRM)), em hardware, buscando acelerar seu tempo de execução, para utilização como classificadores de imagens nos veículos autônomos desenvolvidos pelo grupo de pesquisa do LRM. Dentre as contribuições deste trabalho, as principais são: um hardware configurado em um FPGA que executa a propagação do sinal em um comitê de redes neurais artificiais de forma rápida com baixo consumo de energia, comparado a um computador de propósito geral; resultados práticos avaliando precisão, consumo de hardware e temporização da estrutura para a classe de aplicações em questão que utiliza a representação de ponto-fixo; um gerador automático de look-up tables utilizadas para substituir o cálculo exato de funções de ativação em redes MLP; um co-projeto de hardware/software que obteve resultados relevantes para implementação do algoritmo de treinamento Backpropagation e, considerando todos os resultados, uma estrutura que permite uma grande diversidade de trabalhos futuros de hardware para robótica por implementar um sistema de processamento de imagens em hardware.