Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Yamamura, Charles Lincoln Kenji |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3136/tde-03082023-141552/
|
Resumo: |
Devido à escassez de dados históricos e de ferramentas analíticas adequadas, os gestores normalmente recorrem à intuição e a heurísticas para a tomada de decisões sobre novos produtos. Ainda assim, as decisões não deveriam ser baseadas unicamente em intuição. Técnicas analíticas poderiam trazer consistência e confiabilidade às decisões. A aprendizagem de máquina pode capturar relações não lineares presentes em problemas reais, mas geralmente apresenta a desvantagem de exigir enorme quantidade de dados. O uso de invariantes presentes no conhecimento do especialista pode contornar esse problema, acelerando a convergência de problemas a soluções, sem a necessidade de grandes bancos de dados. Este trabalho propõe um método de previsão e suporte à tomada de decisões estratégicas sobre novos produtos, utilizando o conceito de design dominante e algoritmos de aprendizagem de máquina. O design dominante é um conjunto de atributos principais que definem uma categoria de produtos e é adotado pela maioria dos participantes no mercado. O período de evolução tecnológica anterior à emergência do design dominante é caracterizado por alta incerteza e competição entre diferentes conceitos de produto. Previsão nessa fase refere-se a entender os componentes tecnológicos principais e mapear suas trajetórias. Com a emergência do design dominante, a indústria entre numa fase de relativa estabilidade, com foco no aperfeiçoamento de processos e a inovação de produtos passa a ser incremental. A previsão consiste em determinar uma combinação de atributos vencedora e medir o tamanho da demanda. Invariantes no design dominante, codificadas implicitamente no conhecimento dos profissionais da indústria, são utilizadas para reduzir o espaço de possíveis variáveis. Uma hipótese de produto conjunto dos atributos mais relevantes é esboçada a partir do conhecimento dos especialistas do setor. Um banco de dados, a matriz de atributos e valores alvo, modela o mercado. Uma rede neural artificial extrai as relações não lineares no banco de dados, simulando o mercado. O método é demonstrado por estudos de caso da indústria automobilística, produzindo resultados significativos e mostrando que a abordagem pode ser utilizada em estratégia de novos produtos. |