Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Calvo, Aldo Ignacio Hinojosa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3137/tde-04012016-115933/
Resumo: O propósito desta Tese é realizar o estudo da implementação do controle avançado do tipo controle preditivo baseado em modelo (MPC) e otimização em tempo real (RTO) em uma unidade de processo industrial usando como ferramentas softwares comerciais de simulação e otimização de processos. As soluções propostas podem ser consideradas como estratégias de integração entre RTO e MPC de uma e duas camadas. Na estratégia de duas camadas, a camada superior que considera um modelo rigoroso não linear do processo computa e envia targets otimizantes à camada dinâmica do MPC, que computa as ações de controle necessárias para alcançar esses targets e estabilizar o processo. Na estratégia de uma camada, mais conhecida como MPC econômico, temos a inclusão do gradiente da função econômica na função custo do controlador preditivo. Ambas as estratégias foram estudadas e suas implementações na coluna de destilação de propeno/propano com integração energética da unidade de produção de propeno da refinaria de Capuava da Petrobras foram simuladas. Este estudo foi realizado em varias etapas. Primeiro, uma simulação dinâmica do processo foi realizada usando o simulador dinâmico SimSci Dynsim® para ser usada como uma planta virtual que também foi usada para a identificação dos modelos usados nos controladores preditivos. Segundo, os algoritmos de controle avançado foram desenvolvidos em Matlab® baseados no controlador preditivo de horizonte infinito (IHMPC), no controlador preditivo robusto (RIHMPC) e no MPC econômico. Terceiro, o algoritmo de RTO foi desenvolvido no pacote de otimização em tempo real Simsci ROMeo®, onde o modelo rigoroso não linear do processo foi implantado incluindo as etapas de simulação, reconciliação de dados e otimização. Quarto, modificações e adaptações dos algoritmos e rotinas desenvolvidas foram feitas para permitir a comunicação de dados em tempo real usando o protocolo de transferência de dados OPC entre Matlab®, Simsci Dynsim® e Simsci ROMeo ®. Finalmente, foram desenvolvidos o sequenciamento e automação dos algoritmos tanto para leitura e escritura de dados, assim como, para a rotina do RTO. Para todas as estratégias propostas nesta Tese, foram incluídos exemplos de simulação representativos onde se pode evidenciar a estabilidade e convergência das estratégias propostas, chegando-se à conclusão que as estruturas propostas de RTO/MPC podem ser implementadas no sistema real.