Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Yauri, Jessica Mosqueira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-14112013-120153/
|
Resumo: |
Granada é um grupo de seis silicatos com a mesma estrutura cristalina e fórmulas químicas semelhantes, diferindo um do outro pelos cátions, dos quais o GROSSULAR de fórmula química Ca IND.3Al IND.2Si IND.30 IND.12 é o segundo mineral mais abundante no Brasil, e talvez o mais colorido das granadas. Foram obtidas duas amostras de Araçuaí - Minas Gerais, denominadas GV e GVI que diferem somente no teor de impurezas, as quais foram pulverizadas e peneiradas para realizar medidas de Termoluminescência (TL) e Ressonância Paramagnética Eletrônica (EPR); e cortadas em lâminas e polidas para as medidas de Absorção Ótica(AO). A análise de fluorescência mostrou a presença de 1,37mol% de Fe IND.20 IND.3 na amostra GV e, 6,2mol% na GVI, 1,03mol% de MnO na GV e 0,26mol% na GVI, 0,66mol% de MgO na GV e 0,72mol% na GVI, que participam como defeitos extrínsecos na amostra. A curva de emissão termoluminescente apresentou um pico intenso em alta temperatura em 470ºC para as amostras naturais. Amostras tratadas termicamente em 600ºC/1h. e irradiadas com diferentes doses gama mostraram picos em 145, 235 e 335ºC em GV e em 145, 200, 250, 335 e 445ºC em GVI, mostrando-se mediante a deconvolução da curva TL que GV está formada de seis picos e GVI de sete picos bastante superpostos. Enquanto que em GV os picos de baixa temperatura crescem mais rápido com a irradiação, é o pico em 340ºC que aumenta rapidamente em GVI mantendo sua individualidade, porém em ambos casos os picos TL crescem sublinearmente após 100Gy de doses gama. Outras diferenças consideráveis entre as amostras GV e GVI foram observadas do comportamento com os diferentes tratamentos térmicos, observando-se o aumento da sensibilidade TL somente em GV enquanto que na amostra GVI, não houve a sensibilização, mas, um comportamento bastante caótico. A irradiação ultra-violeta (UV) produz decaimento na intensidade TL, onde em GV a TL residual diminui com a temperatura do pico e em GVI o comportamento é contrário. Estas diferenças não podem ser explicadas baseados somente na diferença do teor de impurezas das amostras e, possivelmente a estrutura cristalina esteja também envolvida. Os íons de ferro e manganês entram na estrutura do grossular, e o cálculo do campo cristalino mostrou que o Fe POT.3+ pode ocupar o sítio tetraédrico e octaédrico substituindo o AI e Si. Os íons Mn POT.2+ e Fe POT.2+ ocupam posições dodecaédricas substituindo o Ca na estrutura. O espectro de EPR. apresentou sinais em g=4,3 , 6,0 relacionados ao ferro e, o sinal em g=2,004 devido à interação de troca e dipolar de ambos íons Fe POT.3+ e Mn POT.2+. O recozimento das amostras em alta temperatura mostrou que os íons de Fe POT.2+ oxidam-se para Fe POT.3+ e os íons de Mn POT.3+ mudam para Mn POT.2+, respectivamente. Não foi encontrada uma correlação entre os defeitos responsáveis pelos espectros de AO e EPR e os centros que participam na termoluminescência. |