Previsão de vazões afluentes a usinas hidrelétricas aplicada à programação da operação do sistema elétrico brasileiro

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Lima, Diana Ruth Mejia de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-04122018-073143/
Resumo: Este trabalho aborda o problema de modelagem de séries de vazões afluentes aos aproveitamentos hidrelétricos. A previsão de vazão natural fluvial é realizada semanalmente para 158 usinas hidrelétricas do Sistema Interligado Nacional (SIN), pois trata-se de insumo fundamental para o planejamento e operação do sistema elétrico brasileiro. Diversos modelos são utilizados na determinação destas previsões, entre os quais podem ser citados os modelos físicos, os estatísticos e aqueles que aplicam sistemas inteligentes. Apesar de contínuos aprimoramentos terem sido incorporados ao processo de previsão de vazão, existem alguns aproveitamentos hidrelétricos para os quais os resultados de estimação têm apresentado grandes desvios. Neste contexto, com a motivação de se obter uma resposta acurada, investigam-se os sistemas fuzzy como modelos concorrentes aplicados à previsão de vazões semanais. O objetivo do trabalho é reduzir os erros de estimação para uma usina piloto, incorporando à previsão de vazão os dados de precipitação. Para a construção da série histórica de precipitação média da bacia hidrográfica, fez-se uma exaustiva pesquisa por estações pluviométricas, seguida por tratamento de dados de medição e método de interpolação. Ao final do trabalho, é apresentada uma análise comparativa entre os resultados obtidos com o Modelo Autorregressivo Periódico (PAR) e o sistema de inferência fuzzy. Com base no desempenho observado, superior ao modelo autorregressivo, comprova-se a adequação do modelo proposto para a modelagem do processo hidrológico.