Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Santos, Flávia Milo dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22092014-110644/
|
Resumo: |
Do ponto de vista da hidrodinâmica clássica, o problema de impacto hidrodinâmico configura-se como um problema de contorno com fronteiras móveis cuja posição deve ser determinada simultaneamente à solução da equação de campo. Essa característica traz dificuldades para obtenção de soluções analíticas e numéricas. Nesse sentido, o presente trabalho propõe o desenvolvimento de um método numérico específico para analisar o problema de impacto hidrodinâmico de corpos sólidos rígidos contra a superfície livre da água. A solução da equação dinâmica não linear do problema de impacto depende da determinação do tensor de massa adicional a cada instante de tempo, o qual depende da posição e atitude do corpo no instante considerado. Um método variacional específico é empregado, através do qual os coeficientes de massa adicional são determinados com erro de segunda ordem, na posição considerada. Tal método é exemplo de técnicas numéricas dessingularizadas, através das quais o potencial de velocidade é aproximado em um espaço finito-dimensional formado por funções-teste derivadas de soluções potenciais elementares, tais como pólos, dipolos, anéis de dipolos, de vórtices, etc. O problema potencial de impacto hidrodinâmico, que se caracteriza pela dominância das forças de inércia, é formulado admitindo-se a superfície líquida como equipotencial, o que permite a analogia com o limite assintótico de frequência infinita do problema de radiação de ondas causada pelo movimento de corpos flutuantes. O método desenvolvido é então aplicado ao caso de impacto vertical de corpos axissimétricos, formulando o problema sob o chamado modelo de von Kármán generalizado (GvKM). Nesse modelo as condições de contorno na geometria exata do corpo são satisfeitas, porém os efeitos do empilhamento de água junto às raízes do jato, que se forma ao longo da intersecção com a superfície livre, não são considerados no caso geral. Resultados numéricos do coeficiente de massa adicional para uma família de esferoides são apresentados e tabulados para o pronto uso em análise e projeto. Além disso, considerações acerca da inclusão do efeito de empilhamento de água junto às raízes do jato, ou seja, da elevação da superfície livre são também feitas para o caso de esferas, fazendo uso de abordagens analíticas encontradas na literatura especializada. |