Utilização de mineração de dados para avaliar perfis de expressão e potencial valor prognóstico de genes identificados em tumores de mama triplo negativo com expressão diferencial do SPARC (Secreted Protein Acidic Rich in Cisteine)

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Céspedes, Andrés Galindo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/5/5155/tde-27102020-152542/
Resumo: Introdução e objetivo: De acordo com a classificação molecular do câncer de mama (BC), os tumores TNBC (câncer de mama triplo negativo) prevalecem como o subtipo mais agressivo, representando 10 a 15% de todos os tumores de mama diagnosticados. Além disso, o fato de os pacientes portadores de tumores de TNBC apresentarem respostas desfavoráveis em relação ao comportamento clínico e taxas de recorrência mais altas motivou um número crescente de pesquisas a direcionar a atenção da descoberta de biomarcadores para o contexto do TNBC. Infelizmente, muitos biomarcadores não conseguiram manejar a previsão da doença. Portanto, há um interesse crescente em explorar as capacidades de novas moléculas dentro das populações de TBNC. O presente trabalho tem como objetivo utilizar ferramentas in silico e bancos de dados públicos de câncer disponíveis para avaliar o papel biológico de um conjunto de genes previamente identificado por nosso grupo no subtipo TNBC. Desenho experimental: Uma abordagem em três etapas foi desenvolvida para selecionar novos e potenciais biomarcadores de uma lista de 100 genes diferencialmente expressos, obtidos de um estudo anterior realizado por nosso grupo na comparação do TNBC com expressão diferencal de SPARC. Primeiro, todos os genes foram anotados manualmente usando os bancos de dados NCBI e a literatura científica. Em seguida, os genes restantes foram avaliados quanto à expressão do tumor versus expressão normal e intrínseca do subtipo. Depois disso, um novo conjunto de genes foi selecionado para avaliar melhor o perfil da expressão e seu significado clínico no TNBC usando dados de três bancos de dados diferentes. Finalmente, o conjunto de genes selecionado foi avaliado de acordo com padrões de expressão, valor prognóstico, alterações genéticas e interações de redes moleculares com ênfase no TNBC. Todos os dados foram obtidos de bancos de dados públicos de câncer e as análises foram realizadas com o R Statistical Package (www.r-project.org/). Resultados e discussão: Cinco de 100 genes foram previstos de acordo com seu desfecho clinico para pior prognóstico, quando regulados positivamente (MESP1, ZNF556, KLHL13), bem como com negativamente (TSPAN8, RIMS2) em pacientes portadores de tumores do tipo basal. Características como desdiferenciação, progressão tumoral e metástase, troncicidade, desregulação no ciclo celular e na matriz extracelular foram encontradas em todos os genes, refletindo assim o estado dos tumores agressivos da mama. Usando esse subconjunto de genes, observamos diferenças significativas na sobrevida em pacientes com câncer de mama nas análises de Kaplan-Meier. Conclusão: Os cinco genes candidatos identificados podem ajudar a revelar os mecanismos moleculares subjacentes ao câncer de mama e fornecer orientações sobre a possível seleção personalizada de esquemas terapêuticos. A abordagem usada neste estudo fornece novos insights para entender melhor o TNBC e outros subtipos de câncer