Characterization and application of fruit byproducts in the development of beef burger and corn extruded product

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Selani, Miriam Mabel
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11141/tde-21102015-085443/
Resumo: This study aimed to characterize pineapple, passion fruit and mango byproducts and select the material with the greatest potential as food ingredient to be applied in two food products: beef burger and corn extruded product. Fiber was the major component present in pineapple and passion fruit byproducts (>50%), and, due to this, they showed considerable water holding capacity. The fruit byproducts had considerable phenolic content and antioxidant activity, especially the mango byproduct. The results of the microbial counts and the content of pesticides residues of the byproducts were within the limits established by the Brazilian law and were safe for food application. Due to the high fiber amount and the functional properties presented, the byproducts were explored considering this potential. Thus, the sample with the best results was selected and evaluated as partial fat replacer in beef burger and as source of fiber in a corn extruded product. The first step of the beef burger application evaluated each byproduct in four concentrations (1.0, 1.5, 2.0, and 2.5%), along with canola oil, as partial fat replacers. All byproducts improved the cooking properties of the burgers, especially the pineapple. Sensory analysis showed that color, odor and overall acceptance were not affected by the treatments. Based on the results, pineapple byproduct, at the concentration of 1.5%, was selected for further studies. Pineapple byproduct (1.5%) and canola oil (5%) were evaluated as partial animal fat replacers in low-fat beef burger. Five treatments were performed: conventional (20% fat) and four formulations with 10% of fat: control, with pineapple byproduct, with canola oil, and with pineapple byproduct and canola oil. Pineapple byproduct incorporation improved the cooking properties and the texture (shear force) and canola oil addition improved the lipid profile, without reducing the shelf life of the burgers. The quantitative descriptive analysis indicated that the use of the two fat replacers together can be an alternative choice to minimize the sensory alterations of the fat reduction. As the final step of this study, the potential application of pineapple byproduct in a corn extruded product for fiber enhancement was evaluated. During extrusion, byproduct (0, 10.5, and 21%), moisture (14, 15, and 16%) and temperature (140 and 160 °C) were evaluated. Pineapple byproduct addition decreased expansion and luminosity, while increasing redness of the extrudates compared to the control (0% byproduct/14% moisture/140 °C). When hardness, yellowness, water absorption, and bulk density were compared to the control, there was no effect of 10.5% addition on the extrudates, indicating that, at this level, pineapple byproduct could be added without promoting significant alterations in the properties of the final extruded product. The results of this study highlight the potential of pineapple byproduct in the development of new products, bringing the opportunity to convert them into value-added food ingredients.